LIVE CELL IMAGING PLATFORMS IN THE FACULTY OF MEDICINE

Guo Jing Lab Manager Faculty Core Facility SEP 14 2011

The University of Hong Kong Li Ka Shing Faculty of Medicine Faculty Core Facility

- Home

ISM STORES

Contact Us

Introduction

Committee of Management

Equipment

Online Booking System

Charges

• Usage Policies and Guidelines

Workshops and Training

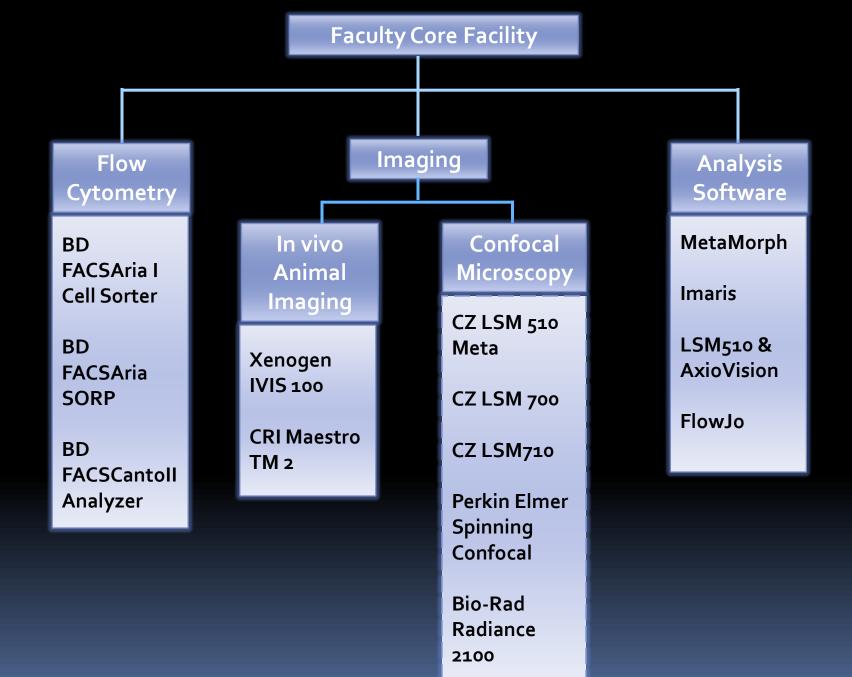
Protocols

Usage records

Publications

Image Gallery

Faculty Core Facility Address: L6-11, 6/F, Laboratory Block, 21 Sassoon Road, Pokfulam Hong Kong



http://www.med.hku.hk/corefac/

Mission

Training and education
 Basic operation
 Advanced applications
 Imaging analysis

- Advice & consultation
- New technology development and collaboration
- Host demonstrations & workshop

Contact Us _Home

Introduction

Committee of Management

- Equipment
- Online Booking System
- Charges
- Usage Policies and Guidelines
- Workshops and Training
- Protocols
- Usage records
- Publications
- Image Gallery

Faculty Core Facility Address: L6-11, 6/F, Laboratory Block, 21 Sassoon Road, Pokfulam Hong Kong

Tel: 29864468 Fax: 29864297 E-mail: corefac@hku.hk

Equipment — Flow Cytometry

BD FACSAria I Cell Sorter:

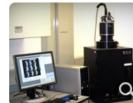
- 488nm blue laser:
 - FITC (530/30nm)
 - PE (585/42nm)
 - iii. PE-Texas Red/PI (616/23nm)
 - iv. PerCP-Cv5.5(695/40nm)
 - v. PE-Cy7 (780/60nm)
- 633nm red laser:
 - APC (660/20nm)
 - ii. APC-Cy7(780/60nm)
- 407 nm violet laser:
 - Pacific Blue/Horizon V450 (450/50nm)
 - ii. Pacific Orange/Horizon V500 (530/30nm)

BD FA	 Introduction
 488 	 Committee of Management
• ii.	Equipment
. 640	 Online Booking System
•	 Charges
ii.	• Usage Policies and Guidelines
5 61	 Workshops and Training
ii.	Protocols
iii.	 Usage records
iv.	- Dublications

- Publications
- 405 Image Gallery

ii.

Faculty Core Facility Address: L6-11, 6/F, Laboratory Block, 21 Sassoon Road, Pokfulam Hong Kong

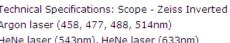

Tel: 29864468 Fax: 29864297 E-mail: corefac@hku.hk

Equipment — Imaging

Xenogen in vivo imaging system 100 series (Xenogen IVIS100)

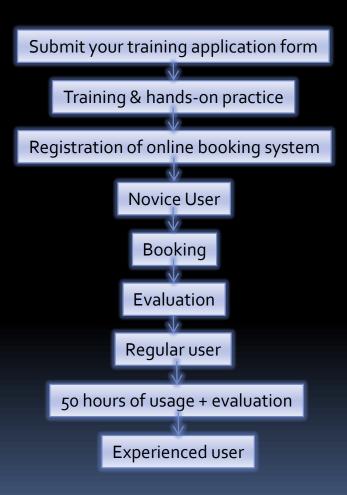
- Bioluminescence tumor and non-tumor models
- OS/Software: Windows XP, Living Imaging (R), version 2.50.1

CRI Maestro TM 2 in vivo imaging system


- Fluorescent tumor and non-tumor models
- OS/Software: Windows XP, Masetro TM Om Vivo Imaging System, version 2.10.0

Carl Zeiss LSM 510 Meta/Axiocam

- It allows complete separation within a sample of multiple fluorophores with overlapping emission spectra. It has a stage area box with temperature and CO2 regulation.
- Technical Specifications: Scope Zeiss Inverted
- Argon laser (458, 477, 488, 514nm)
- HeNe laser (543nm), HeNe laser (633nm)
- Chameleon tunable 2-photon (720-930nm)
- OS/Software: Windows XP, LSM 510 version 3.2 SP2, AxioVision version.4.6.3.0
- Detailed Configuration



Getting started to be an authorized user:

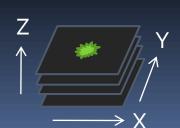
- The training course will be scheduled every month for each microscope facility.
- The first time training course and hands-on practice for users are free.
- Training is generally done in groups of no more than five. You could bring your own specimens to training session.
- After the training session, you could register to be a novice user on online booking system (<u>http://www.med.hku.hk/corefac/</u>).
 Your registration will not be successful until your supervisor approves your application.

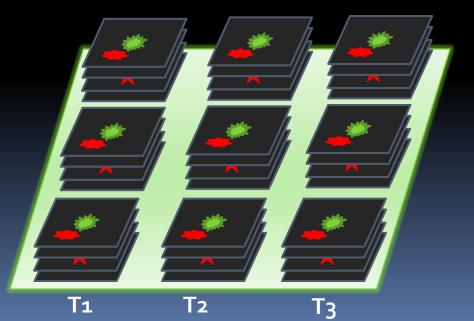
Charging

Instrument	Office hour (HKD/Hour)	Non-office hour
BR Radiance 2100	20	16
LSM 510	120	96
LSM 700	100	80
LSM710	120	96
PE-ERS confocal	80	64
PE-ERS widefield	33	33
FACSCanto II	40	40
FACSAria I	100	80
FACSAria SORP	130	100
Xenogen IVIS100	40/session	N/A
CRI Maestro TM 2	N/A	N/A
Imaris	0	0
MetaMorph	0	0
LSM510	0	0
FlowJo	0	0

*Technical support: 100HKD/Hour

*Technical support is mandatory for Novice users.

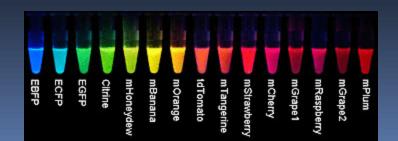

•Charges will apply based on the time reserved and/or time used, whichever is longer. No booking of partial session is allowed.


Same charges will apply for no-show/ failure to cancel booking/late-arrival.
Same charges will apply for overrun of experiment beyond the booking time. Overrun will only be allowed if there is no overlapped booking.

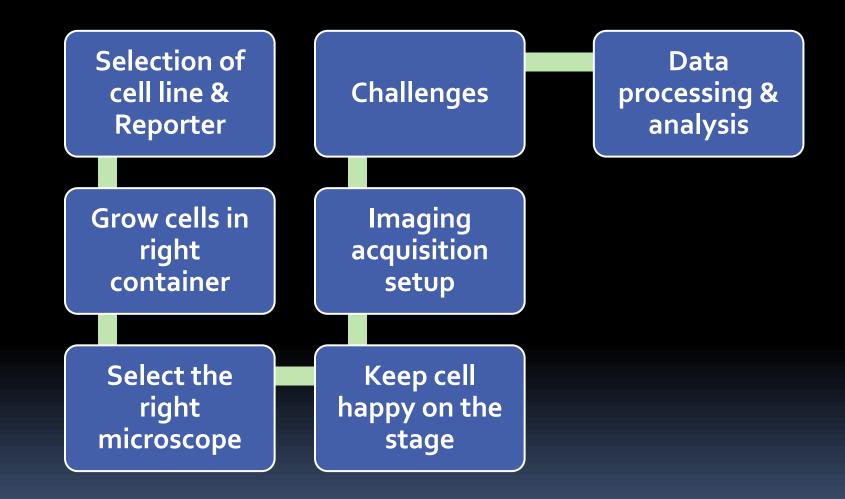
Why Live cell imaging?

- Physiological condition
- Single cell based
- Better time resolution
- Cellular dynamics
- Multi-dimensional imaging acquisition
- 2D: XY
- 3D: XY+Z
- 4D: W+XY+Z
- 5D: T + W + XY + Z
- 6D: P+T+W+XY+Z

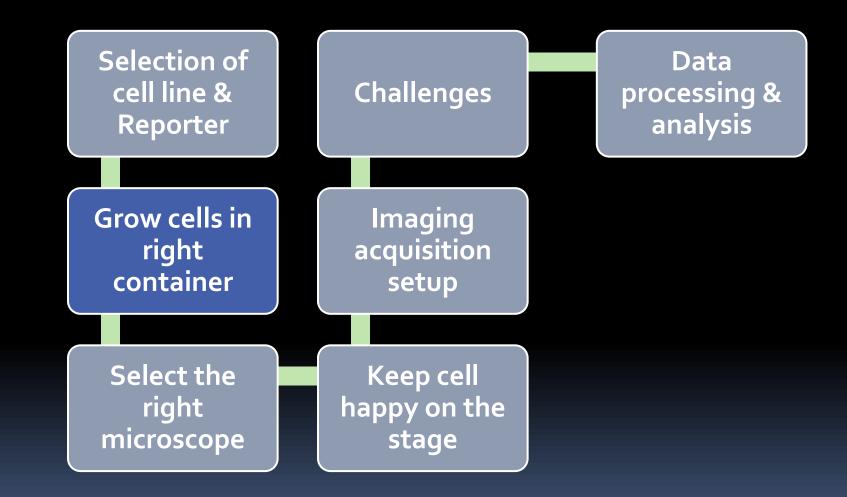
W= Wavelength T=Time P= Position



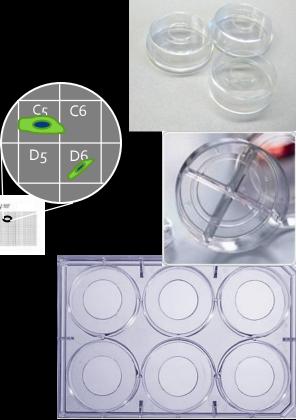
Live Cell Imaging Applications

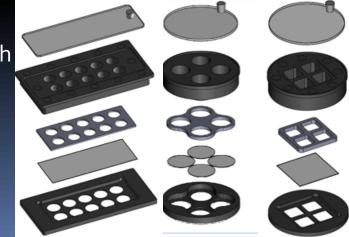

- Dynamic Fluorescence Calcium Signaling
- Cell Motility Cellular movement and differentiation, morphological response to stress and environment
- Neurobiology Interaction of neurons and neuroglial cells, the growth of axons/dendrites
- Elucidation of cellular signaling pathways
- Protein & vesicle tracking

.


- Cell cycle and development studies
- FRET/FLIM analysis of molecular interaction

Workflow of Live Cell Imaging

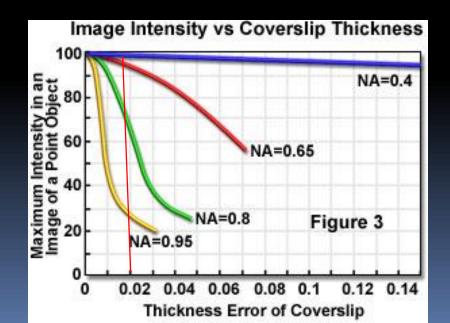

Workflow of Live Cell Imaging



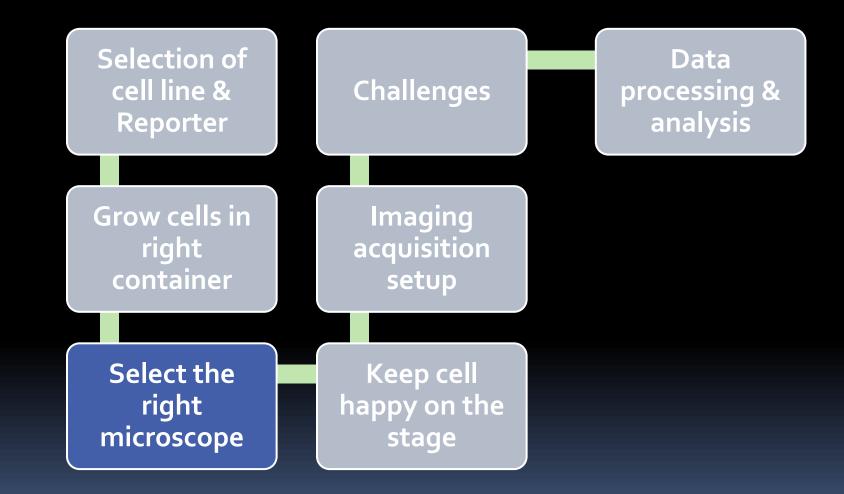
Grow cells in right container

- Coverslip bottom dish; No. 1.5 coverslip; coating
- Cell chamber for coverslip (convenient for fixation after live cell imaging)
- Grid coverslip locate individual cell during & after live cell imaging (The coverslip has 200 alphanumeric locations in a diamond pattern and each measures 0.6 x 0.6mm with line thickness of .02mm)
- Plastic is not transparent enough for fluorescence and is frequently itself autofluorescent. Additionally, plastics polarize light and are not suitable for DIC imaging
- Both plastic and glass slides are too thick for use with high numerical aperture objectives

http://www.glass-bottom-dishes.com/product.html http://www.chamlide.com/



Coverslip



Number	Ideal thickness	Range
#o	100 µm	80-130 µm
#1	150 µm	130-170 µm
#1.5	170 µm	160-190 µm
#2.0	220 µm	190-250 µm

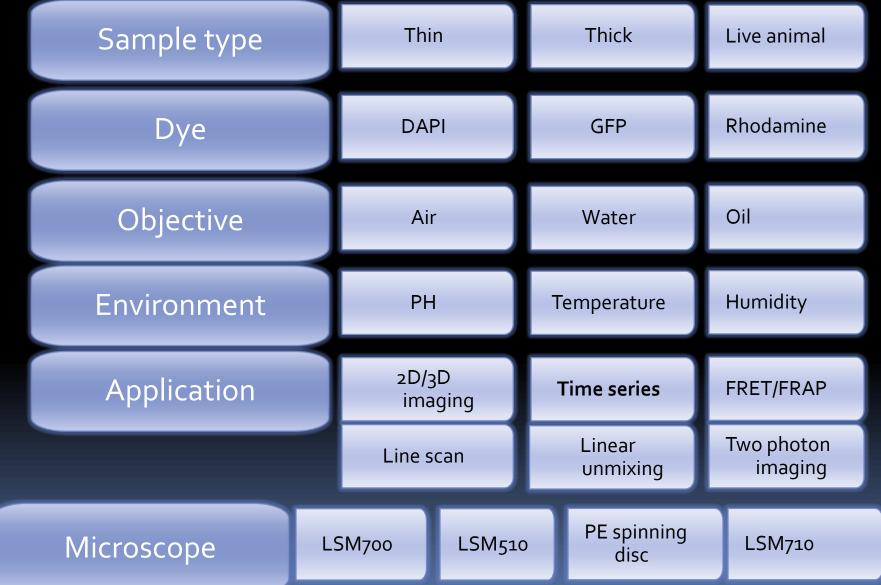
Most objectives are designed to use #1.5 coverslips. Using the wrong one may have serious implications for image intensity and quality. This is particularly true for objectives with NA above 0.4 and when the sample is very close (eg adhered to) the coverslip.

Workflow of Live Cell Imaging

PE Spinning Disc Confocal

CZ LSM 710 Confocal

Which confocal microscope?


CZ LSM700 Confocal

CZ LSM510 Confocal

Which microscope do I need to use for live cell microscopy?

Introduction

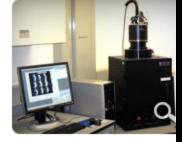
Committee of Management

Equipment

- Online Booking System
- Charges
- Usage Policies and Guidelines
- Workshops and Training
- Protocols
- Usage records
- Publications

Image Gallery

Faculty Core Facility


Address: L6-11, 6/F, Laboratory Block, 21 Sassoon Road, Pokfulam Hong Kong

Tel: 29864468 Fax: 29864297 E-mail: corefac@hku.hk

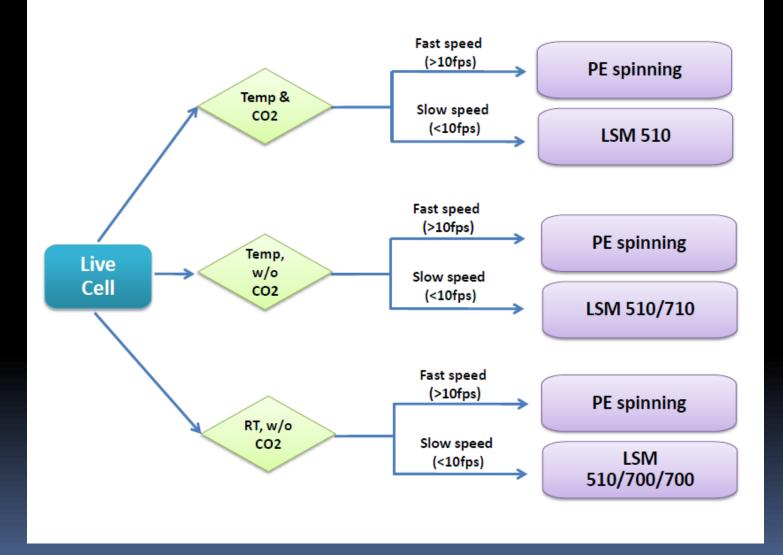
Equipment — Imaging

Xenogen in vivo imaging system 100 series (Xenogen IVIS100)

- Bioluminescence tumor and non-tumor models
- OS/Software: Windows XP, Living Imaging (R), version 2.50.1

OS/Software: Windows XP, Masetro TM Om — Vivo Imaging

Fluorescent tumor and non-tumor models.


CRI Maestro TM 2 in vivo imaging system

System, version 2.10.0

Carl Zeiss LSM 510 Meta/Axiocam

- It allows complete separation within a sample of multiple fluorophores with overlapping emission spectra. It has a stage area box with temperature and CO2 regulation.
- Technical Specifications: Scope Zeiss Inverted
- Argon laser (458, 477, 488, 514nm)
- HeNe laser (543nm), HeNe laser (633nm)
- Chameleon tunable 2-photon (720-930nm)
- OS/Software: Windows XP, LSM 510 version 3.2 SP2, AxioVision version 4.6.3.0
- Detailed Configuration

Zeiss LSM 510 Inverted Confocal Microscope

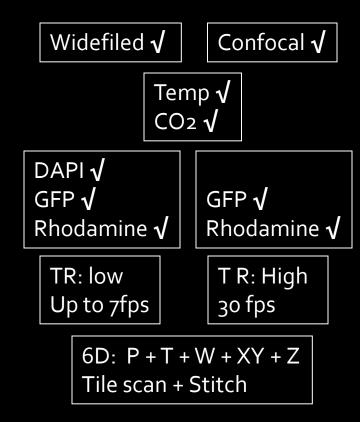
Specification

	Lasers	Argon (458,488,514 nm); HeNe laser (543 nm); HeNe-laser (633 nm); Chameleon tunable 2-photon laser (720-930nm)
	Microscope	
	Stand	Inverted: Axiovert 200M
Ī	XY stage	Motorized scanning stage
	Filter cubes	#49 DAPI; #43 Cy3; #38 EGFP
	Objectives	2.5x0.12;5x 0.15; 10x0.3; LD20x/0.4; LD40x/0.6; 40x1.3 oil; 63x1.4 oil DIC
	Accessories	Digital microscope camera AxioCam Incubator PM S1 External shutters for TL and RL
l	Scan Module	
	Scan mode	xy, xyz, xz, xt, xyt, lambda
	Scanning speed	5 frames/sec with 512 × 512 pixels
	Detector	Meta detector + 2 single PMTs ; 1 transmitted light PMT
	Software	Windows XP, LSM 510 version 3.2 SP2, AxioVision version.4.6.3.0
	Application	DIC imaging; phase contrast imaging, spot/line Scan; Xy 2D imgaging; multi-spectrum fluorecence imaging; Z-stack 3D imaging; lambda scan, linear unmixing; online fingerprinting, colocalization, time series, FRAP, FRET, two photon imaging Multidimentional widefiled acquization with CCDcamera

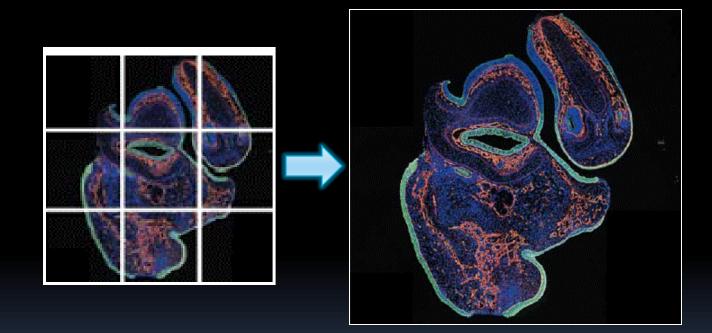
Temp √ CO2 √

DAPI $\sqrt{}$ GFP $\sqrt{}$ Rhodamine $\sqrt{}$ Cy5 $\sqrt{}$

Temporal resolution : low


Laser manipulation $\sqrt{2p}$ imaging $\sqrt{5D: T + W + XY + Z}$

Perkin Elmer Spinning Confocal Microscope


Specification

•	
Lasers	Argon/Krypton laser (488, 568nm)
Microscope	
Stand	Inverted: Axio Obsever
XY stage	Motorized scanning stage
Filter cubes	#49 DAPI; #10 Alexa 488; #15 Alexa 546
Objectives	10x 0.3 Ph1; 20x 0.4 LD Ph2; 40x 0.6 LD Ph2;
	63x1.4 Oil Ph3; 100x 1.4 Oil Ph3
Accessories	CCD camera
	Live cell Incubator
	Piezo objective focus
Scan Module	
Scan mode	xy, xyz, xyt,
Scanning	3of/s
speed	
Detector	EM CCD camera
Software	Windows XP, Metamorph Version 7.7.2.0
Application	Phase contrast imaging; Xy 2D imgaging; multi- spectrum fluorecence imaging; Z-stack 3D imaging; live cell imaging Multidimentional widefiled acquization with CCDcamera

Tile scan + stitching

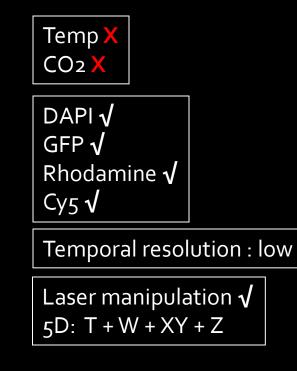
Zeiss LSM 710 Upright Confocal Microscope

Specification

•	
Lasers	Argon (458,488,514 nm); HeNe laser (543 nm); HeNe-laser (633 nm); Spectra Physics MaiTai HP tunable 2-photon (690-1040nm)
Microscope	
Stand	Upright: Axio Examiner
XY stage	Mechanical stage for small animal imaging
Filter cubes	#49 DAPI; #43 Cy3; #38 EGFP
Objectives	5x0.16;10x 0.3; 20x0.5; 40x0.95; 63x1.4 oil DIC; 10x0.3W; 20x1.0WDIC; 63x1.0W
Accessories	Digital microscope camera AxioCam FCS3 closed chamber
Scan Module	
Scan mode	xy, xyz, xz, xt, xyt, lambda
Scanning speed	5 frames/sec with 512 × 512 pixels
Detector	32-array PMTs + 2 single PMTs (spectral detection resolution); 1 transmitted light PMT 2 channels NDD module for reflected fluorescence
Filter set for NDD	Red/green (BP 565-610 /BP 500-550); CFP/YFP (BP455-500/ BP 520- 560)
Software	Windows Vista, ZEN 2009 version 5.5 SP1; Physiology for ZEN 2009
Application	DIC imaging; Spot//line Scan; Xy 2D imgaging; multi-spectrum fluorecence imaging; Z-stack 3D imaging; lambda scan, linear unmixing; online fingerprinting, colocalization, live cell imaging; FRAP, FRET, two photon imaging, small animal imaging

DAPI $\sqrt{}$ GFP $\sqrt{}$ Rhodamine $\sqrt{}$ Cy5 $\sqrt{}$

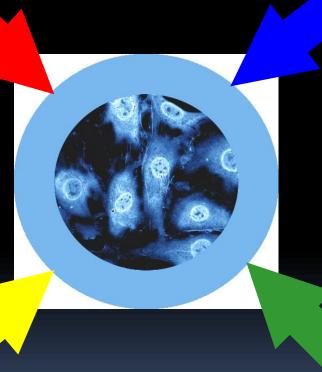
Temporal resolution : low


Laser manipulation $\sqrt{2p}$ imaging $\sqrt{5D}$: T + W + XY + Z


Zeiss LSM 700 Inverted Confocal Microscope

Specification	
Lasers	Solid state lasers: 405nm (5mW); 488nm (5mW); 555nm (10mW); 639nm (10mW)
Microscope	
Stand	Inverted: Axio Observer
XY stage	Manual stage 130x85
Filter cubes	#49 DAPI; #43 Cy3; #38 EGFP
Objectives	10x 0.3 Ph1; 20x0.8 Ph2; 40x1.3 Oil Ph3; 63x1.4 oil Ph3
Scan Module	
Scan mode	xy, xyz, xz, xt, xyt, lambda
Scanning speed	5 frames/sec with 512 × 512 pixels
Detector	2 PMTs for reflection/fluorescence (R/FL) detection channels; 1T-PMT
Software	Windows Vista, ZEN 2010 version 6.0.0.309
Application	Phase contrast imaging; multi-spectrum fluorecence imaging; spot//line Scan, XY 2D imgage; Z-stack 3D imaing; colocalization; time series; FRAP/FRET

Workflow of Live Cell Imaging

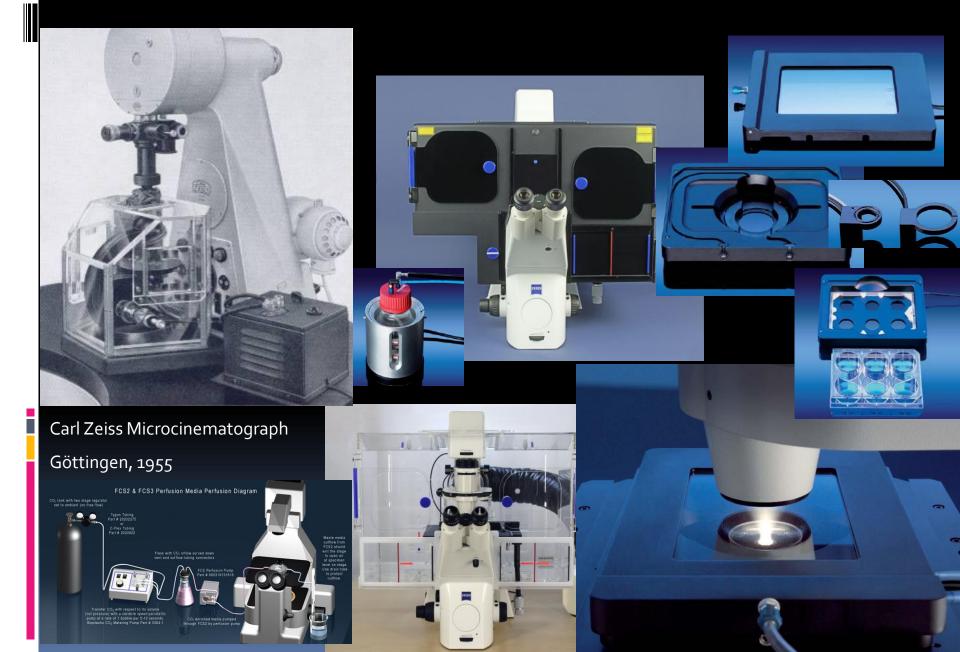


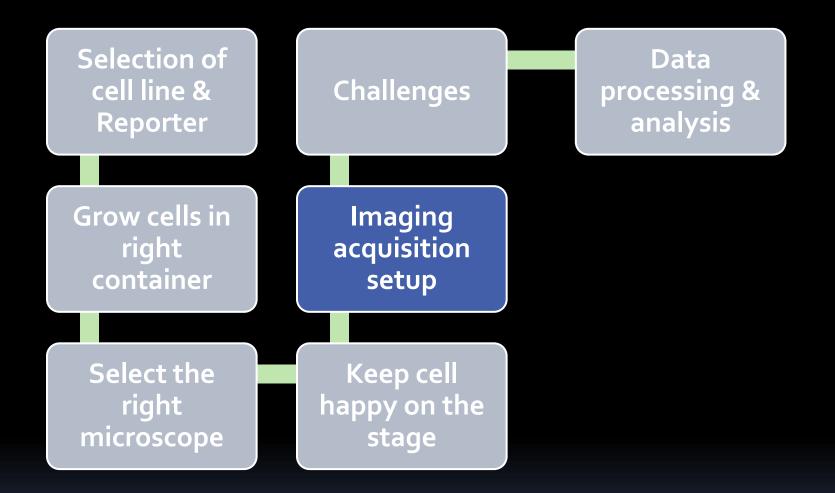
Live cell imaging: Environmental Controls

Temperature

Heating/Temperable Stages, Inserts, Mounting Frames, Incubators, Objective Heaters

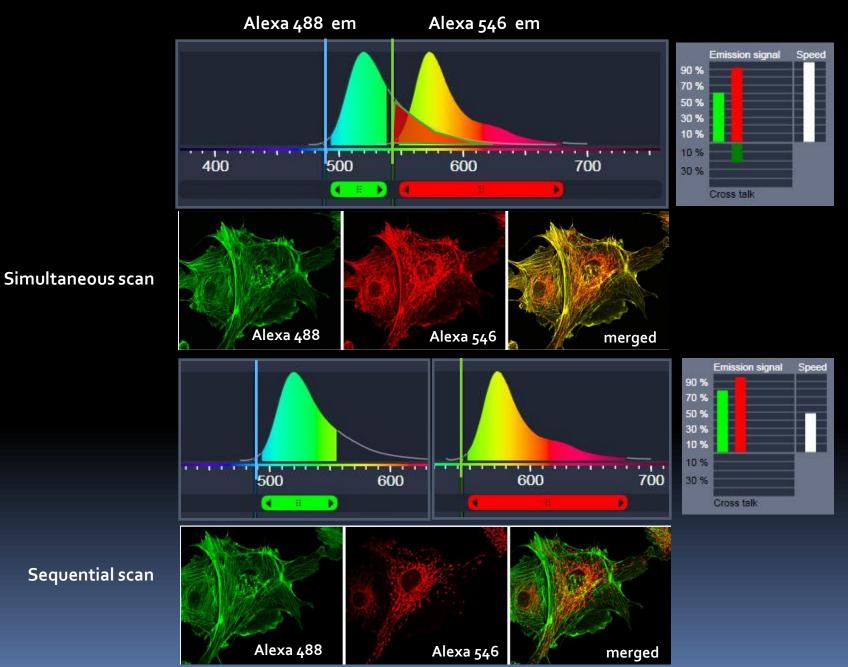
CO₂ control with Incubators Carbonate buffer for stabilization pH-Value

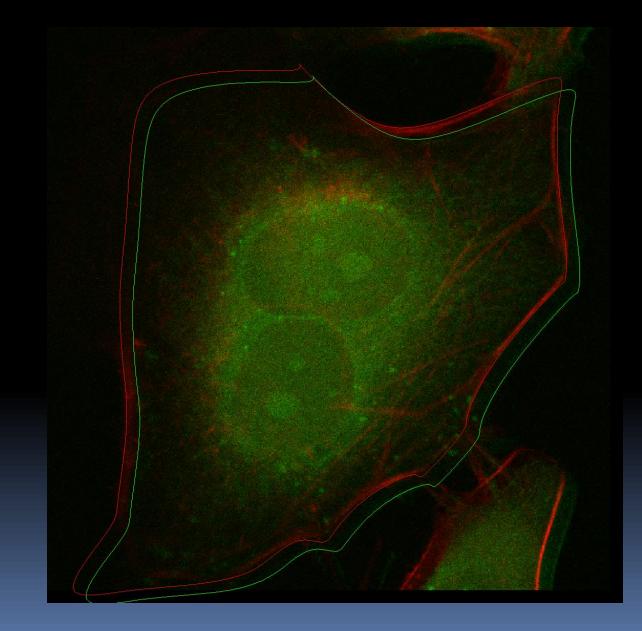



Humidity

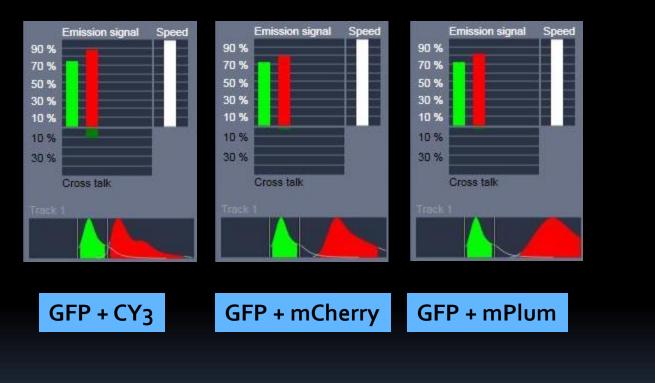
Humidifier System Humidifier Modules

Incubator O₂ control Displacement of O₂ by Nitrogen


Live-Cell Imaging Chamber



Multi-wavelength light path configuration
 Spatial resolution VS temporal resolution


Multiple staining - the emission crosstalk problem

Spatial Shift in Sequential Mode

Multi-Colour Live Cell Imaging Acquisition Strategy

Strategy 1:

Seletion of fluophores with more sperated spectrum

Simultaneous data acquisition in *Channel Mode*

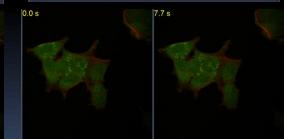
Multi-Colour Live Cell Imaging Sequential Acquisition in Channel Mode

Framewise

Mode

Method

0 s


Line

Mean

Linewise

⊲ Acquisition	Moue			 Show 	au
Objective	Plan-App	ochromat 6	3x/1.40 Oil Di	C M27	
Scan Mode	Frame				
Frame Size	X 1024	-	X*Y	Y 1024	\$
Line Step	1	-		Op	timal
Speed	-	-0	-		Max
Pixel Dwell	1.58 µsec	Scan Tin	ne 7.75 sec		
Averaging					
Number	1	-	Bit Depth	8 Bit	-
Mode	Line	-	Direction	>	
Method	Mean				

Mechanical time = o s

Mechanical time = 18-7.75 s Strategy 2: Sequential data acquisition in Channel Mode

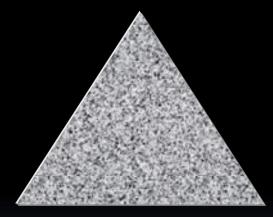
Direction

18 s

Note: line-wise switching between tracks should be chosen in live cell imaging.

Bi-directional Linewise

💊 Acquisitio	n Mode			🖌 Show	ali 🔮
Objective	Plan-Apor	chromat	63x/1.40 Oil I	DIC M27	
Scan Mode	Frame				
Frame Size	X 1024	-	X * Y	Y 1024	•
Line Step	1			Opt	imal
Speed	<u>.</u>			7 🕄 🛛 N	lax
Pixel Dwell	1.58 µsec	Scan T	ime 3.87 se	ec	
Averaging					
		19535			
Number	1		Bit Depth	8 Bit	
Number Mode	1 Line		Bit Depth Direction	8 Bit <>	•
	1 Line Mean	Ð			
Mode	Constant	•	Direction	<>	

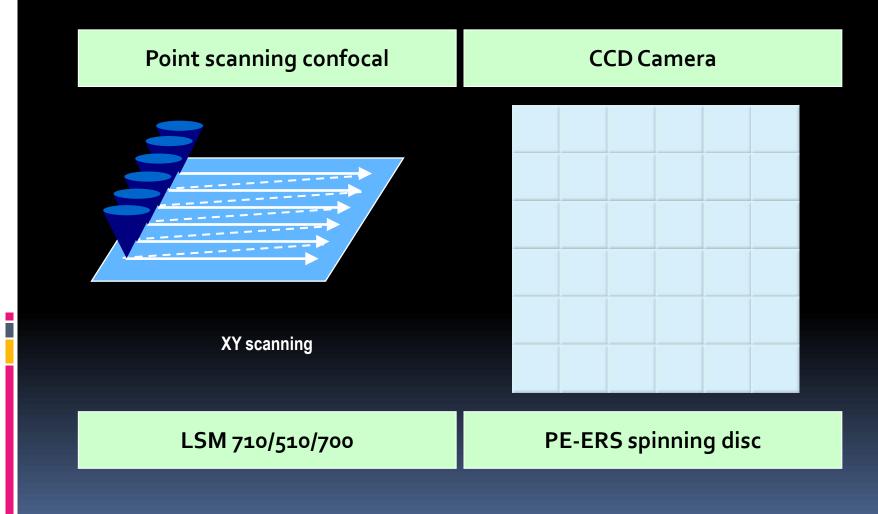

Fastest!

Visualizing Dynamic Processes The Eternal Triangle of Compromise

"Non-invasive" Data Recording

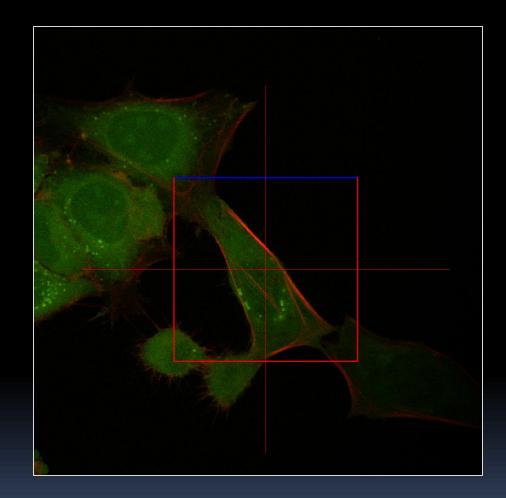
- low photobleaching
- low cytotoxicity (from laser irradiation)

Note: a good compromise has to be found for every live cell imaging task!

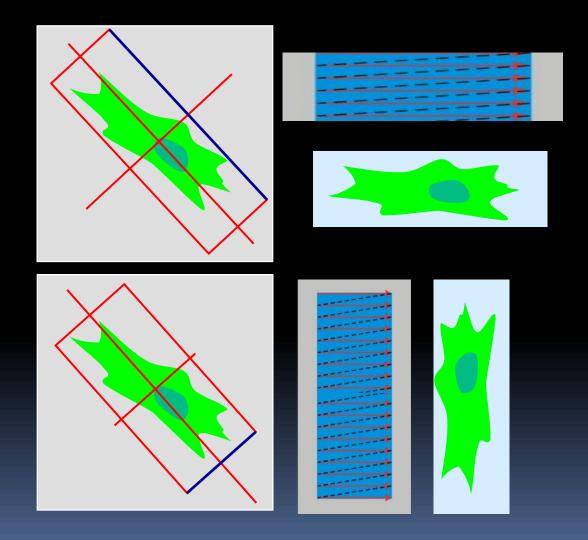

High temporal resolution

- fast acquisition speed
- high number of different time points

High spatial resolution

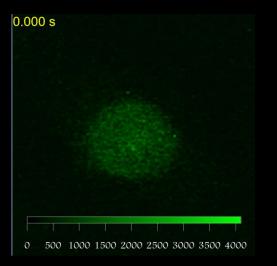

- high resolution image formats
- high resolution Z-Stacks
- optimal S/N

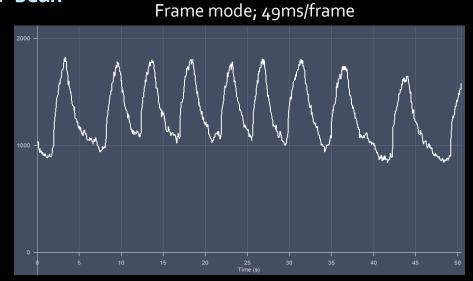
Visualizing Dynamic Processes Point Scanners vs. CCD Camera

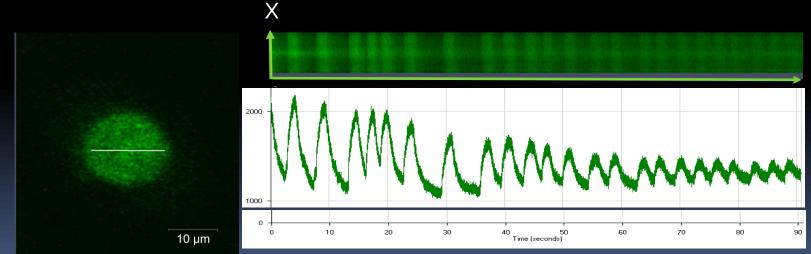


Crop function

🔹 🔁 Acquisition	n Mode			🗸 Show all 🛃
Objective	Plan-Ap	ochromat 6	i3x/1.40 Oil	DIC M27
Scan Mode	Frame			
Frame Size	X 512	•	X*Y	Y 512 💲
Line Step	1	-		Optimal
Speed		0		7 🕄 Max
Pixel Dwell	3.15 µsec	Scan Ti	me 3.87 s	ec
Averaging				
Number	1		Bit Dep	th 8 Bit 🔻
Mode	Line		Directio	n>>
Method	Mean	-		
HDR				
😴 Scan Area				
		Image Siz	ze: 55.2 u	m x 55.2 μm
		Pixel Size		
		↔		2.3 2 0
		1 -		- 5.5 C
		t do —	0	
		1. A		
		Zoom		2.4 🗘 1
				Reset All

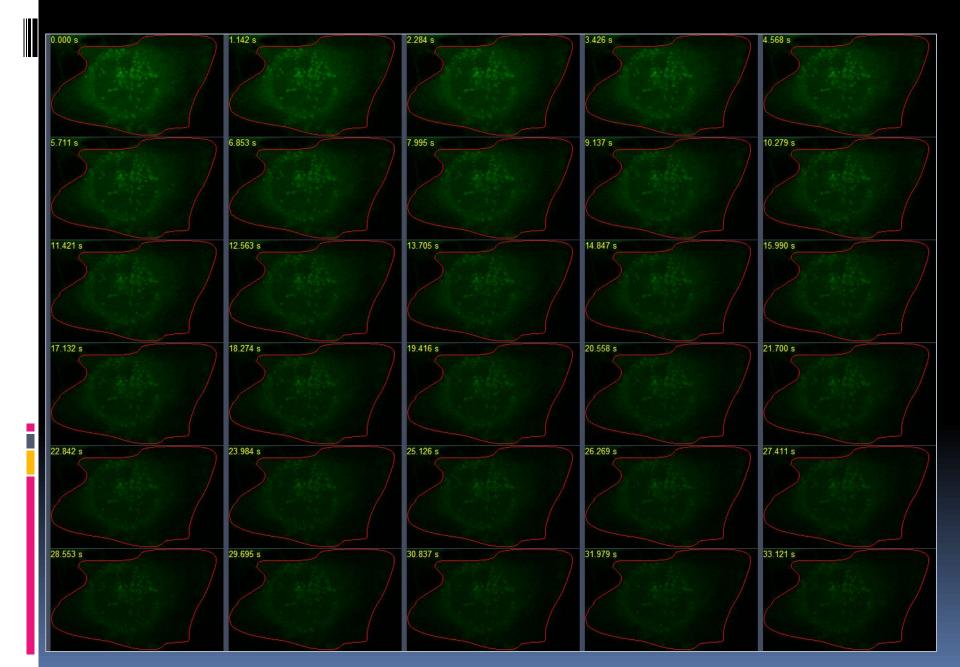



Confocal Laser Scanning Microscopy Scanning Modes: Crop Tool


Both images are the same size – but due to the scanner movement the image below takes longer

Visualizing Dynamic Processes Temporal Resolution: Line scan

Line mode; 600us/line

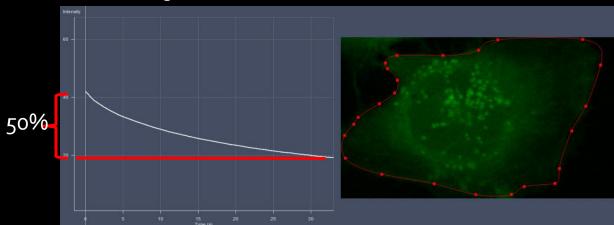


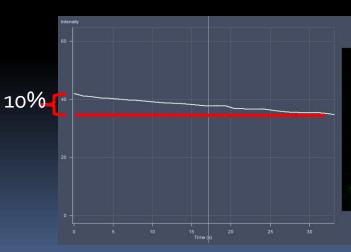
Human embryonic stem cell (hES2) derived cardiomyocyte (hESC-CM), Fluo-3 staining Image courtesy of Prof. Ronald LI, Stem Cell & Regenerative Medicine Consortium

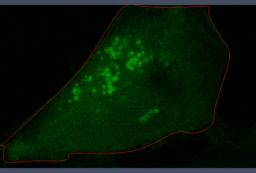
Challenges

Photo bleachingPhoto cytotoxicity

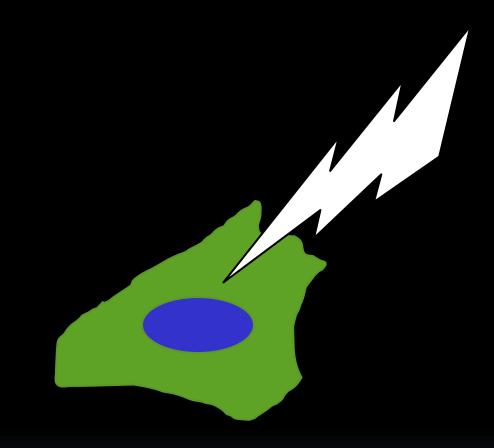
Photo bleaching

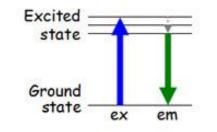



Imaging Strategy:

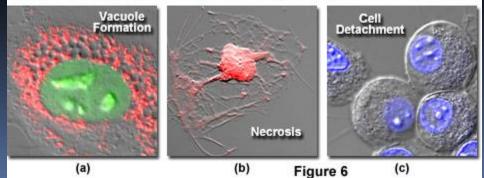

🛦 Ch	annels			✓ Show all
Tracks		Channels		
V Trac	:k 1	A488		
			Select all	Unselect all
Track	1			
Lasers		i mi n		
	458 488 51	4 543 63	3 780	
48	8 nm		0	9.000
				69.9
Pinhole	-0-			00.0
	ـــــــــــــــــــــــــــــــــــــ	um section		1 AU max
	 4iry Units = 0.8 ب Gain (Master			
1.00 /		r) ——		1 AU max

Time series of images acquired at low laser power but relatively high gain setting.
 Focus with brightfield.



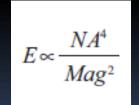


Intensity Profile of time series


Phototoxicity

Cellular Phototoxic Effects from Synthetic and Genetic Fluorophores

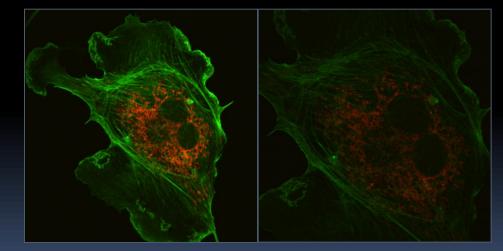
Strategies: Minimize light exposure


- Avoid blue dyes
- Reduce concentration of fluorescence probes
- Phenol red free medium
- Dye specific filters
- EM CCD camera
- High NA objective
- Avoid Phase objective for fluorescence detection
- Reduce Illumination
- Less frame size/or binning
- Minimal lateral (*x and y axes*) *and axial (z axis) resolution should* be used to see the structures of interest.
- Proper temporal resolution to reconstruct dynamic events of interest.
- Antioxidant

$$FWHM_{ill,lat} =$$

$$\frac{0.51*\lambda_{_{em}}}{NA}$$

FWHM = Lateral Resolution [μ m] NA = Objective Numerical Aperture λ_{em} = Emission Wavelength [nm]


 λ = 520nm NA = 1.4 FWHM = 189nm

E = Efficiency of light collection Mag = Magnification of lens

Sample: Bovine pulmonary artery endothelial (BPAE) cells Alexa Fluor® 488 phalloidin MitoTracker® Red

Acknowledgement

Faculty Core Facility Committee Prof. George Tsao Dr. Camie Chan Mr. Benjamin Leung

Prof. Ronald Li Dr. Marco Kong Mr. Harry Chen

All Faculty Core Facility Users!